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Abstract
In this paper we consider three-dimensional quantum q-oscillator field theory
without spectral parameters. We construct an essentially large set of eigenstates
of evolution with unity eigenvalue of discrete time-evolution operator. All these
eigenstates belong to a subspace of a total Hilbert space where an action of the
evolution operator can be identified with quantized discrete BKP equations
(synonym Miwa equations). The key ingredients of our construction are
specific eigenstates of a single three-dimensional R-matrix. These eigenstates
are boundary states for hidden three-dimensional structures of Uq

(
B(1)

n

)
and

Uq

(
D(1)

n

)
.

PACS number: 02.30.Ik
Mathematics Subject Classification: 20G42, 81Txx 82B20, 82B23

Introduction

A quantum q-oscillator system [1, 2] in three-dimensional spacetime is the result of canonical
quantization of a Hamiltonian form [16] of discrete three-wave equations [5, 6, 12].

In the most general form [12, 19], the discrete three-wave equations involve some extra
parameters (spectral parameters in the quantum world) and correspond to a generic AKP-
type hierarchy of integrable systems. There are two special choices of spectral parameters
corresponding to the discrete-differential geometry [3, 15] of discrete conjugate nets (syn.
quadrilateral nets) [4, 6, 10]—either circular nets (syn. orthogonal nets) in Euclidean space or
ortho-chronous hyperbolic nets in Minkowski space. There are a lot of equations associated
with discrete nets; here we mean equations for angular data (rotation coefficients) [1, 10].
Algebraically, circular and hyperbolic nets are distinguished by a signature of determinant of
a rotation matrix.
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For the latter case of hyperbolic nets the equations of motion admit two constraints
reducing the number of degrees of freedom of the Cauchy problem twice. One constraint
corresponds to discrete BKP equations (syn. Miwa equations) [14]. Discrete BKP equations
appear in discrete differential geometry in many ways [11], the constraint for the hyperbolic
net just clearly shows the reduction. The other constraint is a real form on the equations of
motion (curiously, we discuss in fact six-wave equations, they become three-wave upon this
reality condition).

The discrete three-wave equations give a well-posed Cauchy problem in (2 + 1)-
dimensional discrete spacetime. The quantized discrete three-wave equations are the
Heisenberg equations of motion defined by a discrete time-evolution operator. The principal
question of quantum theory is the spectral problem for the evolution operator (Schrödinger
equation).

For arbitrary spectral parameters providing the unitarity of evolution operator the spectral
problem is rather complicated. In this paper we study the evolution operator for trivial spectral
parameters corresponding in classics to the hyperbolic net. We consider both the Fock space
and modular representations of q-oscillators. The quantum analogue of the above-mentioned
constraints provides a definition of a subspace of total Hilbert space, and in this subspace
we construct a large set (presumably infinite set) of eigenstates with unity eigenvalue of the
evolution operator. Since we use in particular a quantum analogue of a dBKP constraint, we
refer the resulting quantum theory to the quantum discrete BKP equations.

This paper is organized as follows. In section 1, we formulate the Cauchy problem in
classics and the quantum Heisenberg equation of motion and give a formal definition of the
evolution operator. Section 1 is a brief outline of [1, 2]. In section 2 we discuss the reductions
in classics and in the quantum case. The subspace of Hilbert space and eigenvectors of the
evolution operator are constructed in section 3.

1. q-oscillator field theory

1.1. Local Yang–Baxter and auxiliary tetrahedron equations

The most convenient form of the auxiliary problem providing the Hamiltonian equations of
motion is the local Yang–Baxter equation.

Let Lαβ[A] be a matrix acting in the tensor product of two two-dimensional vector spaces
Vα and Vβ ,

Lα,β[A] =

⎛
⎜⎜⎝

1 0 0 0
0 k a+ 0
0 a− −k 0
0 0 0 1

⎞
⎟⎟⎠ , A = (k,a±). (1)

In classics, the fields A are constrained by

k2 + a+a− = 1 (2)

and have the bracket

{a+,a−} = k2. (3)

Being quantized, A is the q-oscillator algebra

ka± = q±1a±k, a+a− = 1 − q−1k2, a−a+ = 1 − qk2. (4)

The local Yang–Baxter equation is

Lα,β[A1]Lα,γ [A2]Lβ,γ [A3] = Lβ,γ [A′
3]Lα,γ [A′

2]Lα,β[A′
1], (5)

2
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which defines the following map A1 × A2 × A3 → A′
1 × A′

2 × A′
3:(

k2a
±
1

)′ = k3a
±
1 + k1a

±
2 a∓

3 ,
(
a±

2

)′ = a±
1 a±

2 − k1k3a
±
2 ,(

k2a
±
3

)′ = k1a
±
3 + k3a

∓
1 a±

2 ,
(6)

where in addition

(k1k2)
′ = k1k2, (k2k3)

′ = k2k3. (7)

These formulae work both in classics and in the quantum case. In classics, upon condition
(2) for k′

j , map (6) preserves the symplectic structure (3). In the quantum case map (6)
is an automorphism of the tensor cube of the q-oscillator algebra (4) and therefore for any
irreducible representation of (4) there exists an operator R123 such that

A′
j = R123Aj R−1

123, j = 1, 2, 3, (8)

and the local Yang–Baxter equation becomes the auxiliary tetrahedron equation

Lα,β[A1]Lα,γ [A2]Lβ,γ [A3]R123 = R123Lβ,γ [A3]Lα,γ [A2]Lα,β[A1]. (9)

The key feature of map (6) is that it is the square root of unity,

R2
123Aj R−2

123 ≡ Aj , (10)

and thus we are able to choose the overall normalization of R123 such that

R2
123 = 1. (11)

Matrices L, equation (1), satisfy a free-fermions condition. The local Yang–Baxter
equation is the free-fermions form of Korepanov zero curvature representation [12, 13] for the
matrices of auxiliary linear problem (linear problem for discrete three-wave equations)

Xαβ[A] =
(

k a+

a− −k

)
. (12)

In the discrete differential geometry, this is a matrix of rotation coefficients, the case of a
hyperbolic net in Minkowski space is fixed by the condition det X = −1.

1.2. Lattice equations of motion

Consider now a three-dimensional cubic lattice with basis vectors e1,e2,e3,

n = n1e1 + n2e2 + n3e3, n1, n2, n3 ∈ Z. (13)

Map (6) is the local form of equations of motion:

Aj = Aj,n ⇒ A′
j = Aj,n+ej

, j = 1, 2, 3. (14)

With the spacetime argument n, equation (5) is

Lα,β [A1,n]Lα,γ [A2,n]Lβ,γ [A3,n] = Lβ,γ [A3,n+e3 ]Lα,γ [A2,n+e2 ]Lα,β[A1,n+e1 ], (15)

and equations (6) become

k2,n+e2
a±

1,n+e1
= k3,na±

1,n + k1,na±
2,na∓

3,n,

a±
2,n+e2

= a±
1,na±

2,n − k1,nk3,na±
2,n,

k2,n+e2
a±

3,n+e3
= k1,na±

3,n + k3,na∓
1,na±

2,n,

(16)

relation (7) provides in addition

k1,n+e1k2,n+e2 = k1,nk2,n, k2,n+e2k3,n+e3 = k2,nk3,n. (17)

3
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Since locally the equations of motion are given by the symplectic map or by quantum
automorphism, lattice equations (16) constitute classical Hamiltonian equations or quantum
Heisenberg evolution. The unique way to define the discrete time is

τ = τ(n) = n1 + n2 + n3, (18)

so that all fields in the left-hand side of (15) correspond to time τ and all fields in the right-hand
side correspond to one step forward time τ + 1. A choice of space-like vectors is irrelevant.
For instance, we can choose1

eτ = e2, ex = e1 − e2, ey = e3 − e2, (19)

so that

n = n1ex + n3ey︸ ︷︷ ︸
r

+τeτ , (20)

where r stands for the space-like position vector. This gives

Aj,n ≡ Aj,r(τ ), (21)

and

A1,n+e1 = A1,r+ex
(τ + 1), A2,n+e2 = A2,r(τ + 1), A3,n+e3 = A3,r+ey

(τ + 1), (22)

so that equations (16) are precisely the discrete time Hamiltonian flow.
Equation (16) is a well-posed Cauchy problem for a finite size of a constant time discrete

surface with periodical boundary conditions:

r = n1ex + n3ey, n1, n3 ∈ ZN . (23)

In the quantum case, the Heisenberg equations of motion are defined by the evolution operator,

�(τ + 1) = U�(τ)U−1, U = exp(iH). (24)

In the form of intertwining (15) the evolution operator is defined by

Lα,β [A1,r]Lα,γ [A2,r]Lβ,γ [A3,r] = ULβ,γ [A3,r+ey
]Lα,γ [A2,r]Lα,β[A1,r+ex

]U−1. (25)

The matrix element (or kernel) of the evolution operator can be expressed in terms of
the matrix elements of the R-matrix (8). Let |σ ′〉 and 〈σ | denote conjugated bases in the
representation space of the q-oscillator,

∑ |σ 〉〈σ | = 1 or
∫ |σ 〉〈σ | = 1. Then the R-matrix is

defined by its matrix element or kernel

〈σ1, σ2, σ3|R|σ ′
1, σ

′
2, σ

′
3〉. (26)

An explicit form of matrix elements for the Fock space representation and the kernel for
modular representation can be found in the appendix. The matrix element or the kernel of the
evolution operator is then evidently

〈σ|U |σ′〉 =
∏

r∈Z
2
N

〈σ1,r, σ2,r, σ3,r|R|σ ′
1,r+ex

, σ ′
2,r, σ

′
3,r+ey

〉. (27)

The evolution operator is unitary when R is unitary. The local structure of the evolution
operator corresponds to relativistic casuality, and thus we have the relativistic quantum field
theory.

1 In general, any pair of (n1, n2, n3) can be chosen as space-like coordinates. All choices are equivalent up to
translation operators.
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A complete set of integrals of motion is produced by an auxiliary layer-to-layer transfer
matrix. It is defined as follows:

T (x, y) = Trace
Vα×Vβ×Vγ

(
Dα(x)Dβ(xy)Dγ(y)

�∏
n1

�∏
n3

Lαn3 βn2
[A1,r]Lαn3 γn1

[A2,r]Lβn2 γn1
[A3,r]

)
.

(28)

Here we consider the tensor product of two-dimensional spaces,

Vα = ⊗
n3∈ZN

Vαn3
, Vβ = ⊗

n2∈ZN

Vβn2
, Vγ = ⊗

n1∈ZN

Vγn1
, (29)

so that matrix Lαn3 ,βn2
corresponds to the components Vαn3

× Vβn2
, etc. The ordered product

in (28) is taken over n1,
�∏
n1

fn1

def= f0f1f2 · · · fN−1, (30)

and over n3,
�∏
n3

fn3

def= fN−1fN−2 · · · f1f0. (31)

The index n2 of Vβ spaces is related to n1 and n3,

n2 = −n1 − n3 (τ = 0). (32)

Boundary matrices D are defined by

Dα(x) = ⊗
n3∈ZN

Dαn3
(x), Dα(x) =

(
1 0
0 u

)
∈ End(Vα), etc. (33)

In the definition of ordered products Z
2
N invariance is broken, however the final trace over all

auxiliary spaces restores the Z
2
N invariance of the transfer matrix (28). Due to the ordering of

products, the same transfer matrix can be identically rewritten as

T (x, y) = Trace
Vα×Vβ×Vγ

×
(

Dα(x)Dβ(xy)Dγ(y)

�∏
n1

�∏
n3

Lβn2 γn1
[A3,r+ey

]Lαn3 γn1
[A2,r]Lαn3 βn2

[A1,r+ex
]

)
,

(34)

where n2 = −n1 − n3 − 1.
Comparing now the definition of evolution operator (25) and equivalence of (28) and (34),

we deduce

UT (x, y) = T (x, y)U, (35)

i.e., the layer-to-layer transfer matrix generates the invariants of evolution,

T (x, y) =
∑
a,b

xaybTa,b, 0 � a, b � 2N, |a − b| � N. (36)

From the theory of fermionic tetrahedron equations (see [2, 17]), we know that the layer-to-
layer transfer matrices commute, i.e. the set of Ta,b constitutes a family of 3N2 independent
commutative operators (in classics, quantities in involution)—the integrals of evolution.
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Moreover, in classics the following equation

J (x, y)
def=

∑
a,b

(−)a+b+abxaybTa,b = 0 (37)

defines the spectral curve with genus g � 3N2 − 3N + 1 for the evolution map [12].
The constant-time section of the three-dimensional cubic lattice is known as the kagome

lattice. Operator (28) is the layer-to-layer transfer matrix on the kagome lattice. The evolution
can be seen as a simultaneous shift of all β-lines on the kagome lattice [12, 13].

2. Constraints

2.1. Classical field theory

There are two selected constraints for general A = (k,a±),k2 ≡ 1 − a+a−, breaking the
Hamiltonian structure (3) but preserved by map (6) and therefore by the equations of motion
(16). They are

B: a+ = 1 − k, a− = 1 + k (38)

and

D: a+ = a−. (39)

Constraint ‘B’ results the map

k′
1 = k1k2

k1 + k3 − k1k2k3
, k′

2 = k1 + k3 − k1k2k3, k′
3 = k2k3

k1 + k3 − k1k2k3
.

(40)

This is the well-known representation of a discrete BKP equation [14, 11] as the map satisfying
the functional tetrahedron equation [8, 9]. The substitution

k1,n = u
τn+e2τn+e3

τnτn+e2+e3

, k2,n = v
τnτn+e1+e3

τn+e1τn+e3

, k3,n = w
τn+e1τn+e2

τnτn+e1+e2

(41)

converts equations of motion (16) into the four-term bilinear Miwa equation:

vτn+e1+e2+e3τn = uτn+e1+e2τn+e3 + wτn+e2+e3τn+e1 − uvwτn+e1+e3τn+e2 . (42)

The ‘D’-constraint (39) is just a real form on the equations of motion. For the Cauchy
problem both these constraints mean the reduction of the number of degrees of freedom twice,
6N2 → 3N2. Also, the number of independent invariants of evolution is reduced nearly twice
since

B,D: Ta,b = T2N−a,2N−b. (43)

2.2. Quantum constraints: Fock space representation

Now we are back to the quantum world and the q-oscillator algebra (4). Here we consider the
Fock space representation of q-oscillators over the Fock vacuum |0〉,

a−|0〉 = 0, |n〉 ∼ a+n|0〉, k = qN+1/2, N|n〉 = |n〉n. (44)

Here N is the occupation number operator. If 0 < q < 1 and (a−)† = a+, the R-matrix and
evolution operators are unitary. Constraints B and D, equations (38) and (39), are conditions
for states:

B: ua+|ψB(u)〉 = (1 − q−1/2k)|ψB(u)〉 (45)

6
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and

D: (a− − ua+)|ψD(u)〉 = 0. (46)

Parameter u here is an extra useful C-valued parameter making norms of |ψB(u)〉 and |ψD(u)〉
finite. Solutions to (45) and (46) are respectively

|ψB(u)〉 =
∞∑

n=0

(ua+)n

(q; q)n
|0〉 = (

ua+
j ; q

)−1
∞ |0〉, (47)

and

|ψD(u)〉 =
∞∑

n=0

(
ua+2

j

)n

(q4; q4)n
|0〉 = (

ua+2
j ; q4

)−1
∞ |0〉. (48)

In these formulae we use the Pochhammer symbol

(x;p)n = (1 − x)(1 − px) · · · (1 − pn−1x). (49)

Norms of |ψB〉 and |ψD〉 are given by

〈ψB(v)|ψB(u)〉 = (−qvu; q)∞
(vu; q)∞

, 〈ψD(v)|ψD(u)〉 = (q2vu; q4)∞
(vu; q4)∞

. (50)

Note, ‘B’-relation (45) provides

a−|ψB(u)〉 = u(1 + q1/2k)|ψB(u)〉. (51)

Statement 1. There are two types of invariant subspaces of the R-matrix in the Fock space
representations,

R123|	〉 = |	〉. (52)

They are

|	〉 = |	B〉 = |ψB(u)〉1 ⊗ |ψB(uv)〉2 ⊗ |ψB(v)〉3 (53)

and

|	〉 = |	D〉 = |ψD(u)〉1 ⊗ |ψD(uv)〉2 ⊗ |ψD(v)〉3 (54)

for arbitrary u and v.
Since |ψD〉 involves only even occupation numbers, |	D〉 is the eigenstate of R′

123 =
(−)N2 R123 which corresponds to the Euclidean rotation coefficients X = ( k a+

−a− k

)
with

det X = 1.
In the present paper [18] the reader can find a scenario how to use the vectors |ψD(u)〉 as the

three-dimensional boundary states to reproduce the R-matrices, L-operators and representation
structure of Uq

(
D(1)

n

)
. In a similar and even simpler way the vectors |ψB(u)〉 can be used as

the boundary states reproducing Uq

(
B(1)

n

)
. However, the quantum groups exercises are not

quite relevant to the study of the three-dimensional evolution operator.
Using formulae for map (6), we can instantly obtain

R123k2|	B〉 = (k1 + k3 − k1k2k3 + (q1/2 − q−1/2)k1k3)|	B〉, (55)

which is the quantum counterpart of (40). However, decomposition of R123F(k1,k2,k3)|	B〉
for arbitrary function F is not well defined, and the modular representation is preferable.

7
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2.3. Quantum constraints: modular representation

For the modular representation of the q-oscillator we use the Heisenberg pair σ, p,

[σ, p] = i

2π
. (56)

The oscillator is given by

q = eiπb2
, k = −i eπbσ , w = e2πbp, a± = (1 − q∓1k2)1/2w±1. (57)

The dual one is then

q = e−iπb−2
, k = i eπb−1σ , w = e2πb−1p, a± = (1 − q∓1k

2
)1/2w∓1. (58)

Define a state |�〉 by its wavefunction:

〈σ |�〉 = �(σ) = exp

(
1

8

∫
R+

e−2iσw

sinh(bw) cosh(b−1w)

dw

w

)
. (59)

The modular invariance b ↔ b−1 is broken. The state |�〉 satisfies

a+|�〉 = (1 − q−1/2k2)|�〉, (60)

which is the B-type condition, and

(a− − a+)|�〉 = 0, (61)

which is the D-type condition. The asymptotic of � is

�(σ)σ→−∞ → 1, �(σ)σ→+∞ → e−πb−1σ/2. (62)

Let next

|�d〉 = kd |�〉, (63)

where d is real (and integer). A test of asymptotic of function �(σ) shows that the state |�d〉
has a finite norm if

0 < d <
1

2b2
. (64)

Thus, in what follows we imply the quantum regime near quasi-classical point b = 0:

0 < b � 1, (65)

so that d can be reasonably high.

Statement 2. For the modular representation of the q-oscillators operator R123 has the
eigenstates (52) given by

|	〉 = |�d〉1 ⊗ |�d+d ′ 〉2 ⊗ |�d ′ 〉3. (66)

Moreover, due to the asymptotic of R, one can verify that if a state F(k1,k2,k3)|	〉 has
a finite norm, then the convolution R123F(k1,k2,k3)|	〉 is convergent and therefore a map
F → F ′ in the space of meromorphic functions with proper asymptotic (64)

R123F(k1,k2,k3)|	〉 = F ′(k1,k2,k3)|	〉 (67)

is well defined. This extends equation (55) to a subspace of whole Hilbert space–quantum
BKP theory. In the classical limit b → 0 (q → 1) this map becomes the rational one,

F ′(k1,k2,k3) →
b→0

F(k′
1,k

′
2,k

′
3), (68)

where k′
j are given by (40).

8
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3. Ground states of the evolution operator

3.1. Fock space representation

The straightforward extension of (53, 54) to the whole constant time surface is

|	〉 =
∏

r=n1ex+n3ey

|ψ(un3)〉1,r ⊗ |ψ(un3vn1)〉2,r ⊗ |ψ(vn1)〉3,r (69)

for B and D states in Fock space. The thus defined |	〉 are the eigenstates of the evolution
operator,

U |	〉 = |	〉, (70)

for arbitrary un3 and vn1 . Series decomposition of |	〉 gives an infinite set of eigenstates
corresponding to fixed eigenvalues of

Jn3 =
∏
n1

k1,n1ex+n3ey
k2,n1ex+n3ey

, Kn1 =
∏
n3

k2,n1ex+n3ey
k3,n1ex+n3ey

. (71)

The set of operators J and K belongs to the family of integrals of motion (36).
Remarkably, the thus constructed eigenstates of the evolution operator are not in general

eigenstates of all integrals of motion. Thus, the more general form of evolution eigenstates is
given by (u, v)-decomposition of∏

a,b

T
na,b

a,b |	〉, (72)

where Ta,b is defined by (36). Recall that Ta,b|	〉 = T2N−a,2N−b|	〉, in (72) we use a set of
independent Ta,b with non-diagonal action on |	〉.

3.2. Modular representation

For the modular representation the basic eigenstate of the evolution operator is given by

|	〉 =
∏
n3

J
dn3
n3 ·

∏
n1

K
d ′

n1
n1 ·

∏
r,j

|�〉j,r, (73)

where J and K are given by (71) and |�〉 is given by (59). This state has the finite norm if

0 < dn3
, d ′

n1
<

1

2b2
, (74)

confer with (64). The extended set of eigenstates is given by (72). Note that the J,K pre-factor
in (73) is an element of

∏
a,b T

na,b

a,b . For sufficiently small b the states (72) have finite norms.
However, contrary to the Fock space case, the states∏

a,b

T
na,b

a,b |	〉, (75)

where T a,b are modular partners to Ta,b, do not have finite norms.

4. Conclusion

General evolution operators for three-dimensional field theories are given by (27),

〈σ|U |σ′〉 =
∏

r∈Z
2
N

〈σ1,r, σ2,r, σ3,r|R|σ ′
1,r+ex

, σ ′
2,r, σ

′
3,r+ey

〉, (76)

where the constant R-matrix is replaced by

R123 = �−1 ei(π−φ2)N 2 R123 e−iφ1N 1−iφ3N 3 (77)

9
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for the Fock space representation, Nj here are the occupation numbers, and by

R123 = �−1 e2iηφ2σ2 R123 e−2iηφ1σ1−2iηφ3σ3 (78)

for the modular representation, η here is the crossing parameter, η = 1
2 (b + b−1).

R-matrices and evolution operators are unitary for real spectral parameters φi . Quantum
field theories have good quasi-classical limits for positive φi corresponding to sides of
certain hyperbolic triangles [19]. Spectra of evolution operators essentially depend on
values of spectral parameters. Presumably, the positiveness of the spectral parameters
and a proper choice of the unitary normalization factor � in (77) and (78) provide a good
physical interpretation of the evolution spectra in terms of ground state and elementary
excitations.

In this paper we consider the special case of trivial spectral parameters. The main result of
the paper is the observation of essential degeneracy of the ground state U = 1 of the spectral
parameters free case. The eigenstates constructed belong to a subspace of Hilbert space
where Heisenberg evolution is a q-analogue of discrete BKP equations. These eigenstates
however are not orthogonal and do not solve the problem of diagonalization of all integrals of
motion.
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Appendix. Matrix elements and kernel

A.1. Matrix elements

Matrix elements of the R-matrix of statement 1 in the unitary Fock basis

F +: |n〉 = a+n√
(q2; q2)n

|0〉, n � 0 (A.1)

are given by

〈n1n2n3|R|n′
1n

′
2n

′
3〉 = δn1+n2,n

′
1+n′

2
δn2+n3,n

′
2+n′

3

3∏
i=1

cni ,n
′
i

× qn1n3+n′
2

1

2π i

∮
dz

zn′
2+1

(−q2+n′
1+n′

3z; q2)∞(−q−n1−n3z; q2)∞
(−q+n1−n3z; q2)∞(−q−n1+n3z; q2)∞

, (A.2)

where

cn,n′ =
√

(q2; q2)n′

(q2; q2)n
for n = 0, 1, 2, 3 . . . . (A.3)

Here Pochhammer’s symbol and Euler’s quantum dilogarithm are defined by (49). Coefficients
cn,n′ are just gauge factors. The clockwise integration loop in (A.2) circles all poles from
dilogarithms but does not include z = 0. The Cauchy integral expression is equivalent to
generating functions from [17].

Formula (A.2) serves in fact eight different R-matrices. The occupation numbers in (A.2)
are in general integers,

n ∈ Z = Z<0 ⊕ Z�0. (A.4)
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This corresponds to the direct sum of Fock and anti-Fock representations,

F = F− ⊕ F +. (A.5)

Matrix (A.2) has the block-diagonal structure in

F
ε1
1 ⊗ F

ε2
2 ⊗ F

ε3
3 , εi = ±. (A.6)

The R-matrix is unitary in four blocks with ε1ε2ε3 = +. In anti-Fock components quantum
constraints (45) and (46) should be slightly modified. In this paper we use the block
F +

1 ⊗ F +
2 ⊗ F +

3 where (A.2) is equivalent to the constant R-matrix from [1].

A.2. Kernel for modular representation

The kernel of R-matrix of statement 2 in representation (57,58) is given by [1]

〈σ1σ2σ3|R|σ ′
1σ

′
2σ

′
3〉 = δσ1+σ2,σ

′
1+σ ′

2
δσ2+σ3,σ

′
2+σ ′

3

√
ϕ(σ1)ϕ(σ2)ϕ(σ3)

ϕ(σ ′
1)ϕ(σ ′

2)ϕ(σ ′
3)

e−iπ(σ1σ3−iη(σ1+σ3−σ ′
2))

∫
R

du e2π iu(σ ′
2−iη)

ϕ
(
u + σ ′

1+σ ′
3+iη

2

)
ϕ
(
u + −σ1−σ3+iη

2

)
ϕ
(
u + σ1−σ3−iη

2

)
ϕ
(
u + σ3−σ1−iη

2

) ,

(A.7)

where ϕ(σ) is the Barns–Faddeev non-compact quantum dilogarithm [7]

ϕ(z) = exp

(
1

4

∫
R+i0

e−2izw

sinh(bw) sinh(w/b)

dw

w

)
(A.8)

and η = 1
2 (b + b−1) is the crossing parameter. In this paper we imply the regime of large

crossing parameter, 0 < b � 1. Both the quantum dilogarithm ϕ(σ) and asymmetric function
�(σ) (59) are analytical in the strip

−η < Im(σ ) < η. (A.9)
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